當前位置:濰坊恒新環保水處理設備有限公司>>技術文章>>200噸醫院污水處理設備工藝
本產品由feng于2019.7.10發布
同時硝化和反硝化(SND)現象是在氧化溝等工藝中發現的,是在有氧條件下發生了反硝化作用而導致總氮減少的現象。已證實SND是由物理原因引起的.其中溶解氧濃度和污泥絮凝體的大小是SND的主要影響因素:將環境溶解氧控制在較低水平.缺氧環境所占比例增大.有利反硝化作用的進行.從而有利于SND的發生。利用微氧條件下培養的顆粒污泥.研究了污泥粒徑對于COD和氮去除的影響,結果表明,在SND發生以后.污泥顆粒被破碎成懸浮物.氮的去除效率明顯降低 可見,微氧條件下的污泥顆粒化是同時硝化與反硝化發生的必要條件。
在微氧條件下,氮的去除途徑除了上述的同時硝化與反硝化外,還有短程硝化和反硝化。在常規的硝化反應中.氮的硝化分為兩步,分別由不同的微生物完成。
其反應為:亞硝酸化:2NH4+ + 302— 2NO2- +4H+ +2H20(由氨氧化菌完成)硝化:2 NO- +02 一 2 NO3 -(由亞硝酸氧化菌完成)
很顯然,在生物脫氮的過程中,由NO3-氧化成NO3-,把NO3-還原成NO3-的兩步反應是多余的。如果能夠避免這兩個環節就可以節省25% 的氧氣和約40% 的有機碳源。短程硝化和反硝化就是將硝化過程中將反應控制在亞硝酸化階段.從而直接進行反硝化。因此,如何能將硝化反應控制在反硝化階段是實現短程硝化和反硝化的關鍵。廢水中氨和微溶解氧對亞硝酸氧化菌有抑制作用,有利于氨氧化菌在微氧條件下成為優勢菌種,從而有利于短程硝化與反硝化的進行。但不等于溶解氧越低越好,楊寧等 .利用CSTR(連續攪拌流反應器)反應器,對高氨(氨的質量濃度為856 mg/L)廢水進行處理,發現:溶解氧的質量濃度在0.2 mg/L持續運行會顯著降低氨氧化菌的活性。
化學沉淀法可以處理各種濃度氨氮廢水。其與生物法結合處理高濃度氨氮廢水,曝氣池不需達到硝化階段,曝氣池體積比硝化-反硝化法可以減小約一倍。NH4+-N在化學沉淀法中被沉淀去除,與硝化-反硝化法相比,能耗大大節省,反應也不受溫度限制,不受有毒物質的干擾,其產物MAP,還可用作肥料,可在一定程度上降低處理費用。因此,MAP沉淀法是一種技術可行、經濟合理的方法,很有開發前景,但要廣泛應用于工業廢水處理,尚需解決以下兩個問題:(1)尋找價廉的沉淀劑;(2)開發MAP作為肥料的價值。
離子交換法
沸石是一種對氨離子有很強選擇性的硅鋁酸鹽,一般作為離子交換樹脂用于去除氨氮的為斜發沸石,此法具有投資省、工藝簡單、操作較為方便的優點,但對于高濃度的氨氮廢水,會使樹脂再生頻繁而造成操作困難,且再生液仍為高濃度氨氮廢水,需再處理。常用的離子交換系統有以下三種類型:
(1)固定床
在此系統中,溶液的去離子過程為二階段間歇過程。溶液通過陽樹脂床時陽離子與氫離子交換生成酸溶液,然后此溶液再通過陰樹脂床,以去除陰離子。交換能力將耗盡時,樹脂在原位再生,經常采用向下流再生法,此法操作可靠方便,但其化學效率相對較低,容積較大,到樹脂用量大,有時為了適應連續流的要求,還需要有儲備裝置,因而投資費用較高。
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,環保在線對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。