畜禽養殖場污水處理設備價格
一級處理水溢入緩沖池,再在控制pH用二級溶氣水泵將一級處理水提升至二級壓力溶氣罐內,同時吸入空氣和聚凝脫色劑,將二級壓力溶氣罐內的二級飽和溶氣水驟然釋放到二級氣浮池形成二級處理水并自溢至沉淀池沉淀后排放
據環境部門監測,全國城鎮每天至少有 1 億噸污水未經處理直接排入水體。
畜禽養殖廢水處理與利用過程抗性基因已開展了一定的研究,但現有研究較多采用現場調研方式,對抗性基因的轉歸機制和去除研究不足,缺乏畜禽養殖廢水生物處理與農田利用全過程中抗性基因的系統性研究,難以提出抗性基因減控的有效策略.因此,本文提出如下研究展望:
1)已有研究大多針對畜禽養殖廢水生物處理和農田利用過程中四環素類與磺胺類抗性基因的分布規律,但有關β內酰胺類、喹諾酮類抗性基因及其耐藥菌的研究較為缺乏,而后者抗生素多用于人類疾病治療,建議今后加強這方面的研究.
2)畜禽養殖廢水抗性基因的消減機制尚不明確.現有畜禽養殖廢水中抗性基因消減規律的研究不多,對抗性基因消減規律的解析不足.已有研究主要考察生物處理對抗性基因豐度消減的影響,較少關注功能菌群、工藝操作參數、環境參數與耐藥菌群結構(抗性基因宿主細菌)的相互關系.
3)不同畜禽養殖廢水和土壤類型、抗性基因類型對養殖廢水農田利用抗性基因的傳播規律不可一概而論,缺乏系統性的機制研究.需要從畜禽養殖廢水生物處理和農田利用全過程對耐藥菌、抗性基因轉歸和控制措施進行系統研究和綜合評價.

畜禽養殖廢水中富含有機質、氮、磷等營養物質,通常經過厭氧發酵、氧化塘等工藝處理后,作為肥水還田利用,這既節約了處理成本,也促進了養分循環利用,目前我國、美國、歐洲等國家都推行畜禽養殖廢水的農田利用.然而,畜禽養殖廢水農田利用可能產生抗性基因從養殖場向農田土壤的傳播風險.
土壤是重要的抗性基因儲存庫,其中主要的抗性基因來源包括土壤中固有的抗性微生物所攜帶的抗性基因,以及外源進入土壤中抗性微生物所攜帶的抗性基因,但有關土壤中抗性基因的研究較為缺乏.)指出豬糞施用于農田存在抗性基因的水平轉移風險,由于糞源微生物與土壤微生物不同,糞源微生物進入土壤后在幾個月中大量消失,但抗性基因可通過水平轉移進入土壤本土微生物中,進而引起土壤微生物抗性基因豐度的增加.而研究發現牛糞農田利用引起土壤中抗性基因blaCEP豐度的提高是由于攜帶抗性基因的假單胞菌(Pseudomonas sp.)和紫色桿菌(Janthinobacterium sp.)的增殖,而這兩種細菌來自于土壤,而非糞便引入.糞便農田利用可引起抗性基因豐度提高,但其微生物學機制仍不明確.
處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉淀法,砂濾法,活性炭吸附法,離子交換法和電滲析法等。
根據統計,中國有3.2億農民沒有飲用水;大約有1.9億農民是喝受到污染的水。此外,灌溉農田的水散發著惡臭,而且漂浮著一些污染的泡沫。而這樣條件下生產的食物,卻登上了中國人的餐桌。
厭氧消化工藝以外,氧化塘、人工濕地也是畜禽養殖場廣泛使用的廢水處理工藝.Joy等.調查了氧化塘儲存豬場廢水40 d抗性基因的變化,ermB和ermF的豐度分別降低了50%~60%和80%~90%,而tetX和tetQ豐度的消減符合一級反應動力學模型.將氧化塘處理豬場廢水后抗性基因的去除趨勢歸為兩類,一類是相對豐度大幅降低甚至低于檢測限,包括tetB、tetL;另一類為經處理后豐度不變甚至有所提高,包括tetG、tetM、tetO和tetX,可能因為這類基因常位于轉移原件上,在廢水中發生了基因的水平轉移.鄭加玉等采用水平流人工濕地處理豬場廢水,結果表明tetW、tetM和tetO的濃度平均去除率分別為95.73%、92.21%和95.05%;可能由于土壤對抗性基因的吸附作用,濕地土壤中抗性基因的豐度有明顯升高現象.Liu等模擬垂直流人工濕地中添加沸石研究抗性基因的消減規律,發現在HRT為30 h時豬場廢水抗性基因去除效果較好.
膜生物反應器(Membrane bioreactor,MBR)工藝
膜分離技術近年已在畜禽養殖廢水處理領域得到了一定的研究與應用,并日益得到重視.例如,Padmasiri等采用厭氧MBR處理豬場廢水,有機負荷為1.0 kg · m-3 · d-1高于其他厭氧消化工藝采用好氧MBR處理豬場厭氧消化液TN負荷0.11 kg · m-3 · d-1較高.然而針對MBR處理畜禽養殖廢水抗性基因去除規律的研究較少.Du等調研了污水處理廠采用A2OMBR工藝處理生活和工業混合廢水對四環素類和磺胺類抗性基因的去除效果,結果表明MBR工藝對tetG、tetW、tetX、sul1和intI1分別去除了2.20、2.90、1.71、2.15和2.07 log copies · mL-1,膜出水抗性基因豐度仍然較高(2.85~4.97 log copies · mL-1),然而作者并未給出膜孔徑等膜分離工藝參數.
同常規生物處理工藝相比,MBR的生物量高,可能存在較大的抗性基因水平轉移風險.Yang等以RP4質粒作為水平轉移研究對象,研究了MBR中抗性基因的水平轉移效率,結果表明RP4在MBR中維持較高豐度104 copies/mg · biosolid,具有較高的水平轉移效率(2.76×10-5/recipient),而RP4在常規活性污泥法的水平轉移效率約4×10-6 /recipient;盡管存在較高的水平轉移效率,但由于微濾膜(PVDF,0.22 μm)的截留作用,出水檢測不到攜帶抗性基因的RP4.由于膜的截留,一方面可消減膜出水的抗性基因濃度,另一方面導致反應器內污泥濃度高,可能使抗性基因在反應器內積累,提高了污泥中抗性基因的水平傳播.污泥是重要的抗性基因蓄積庫,經過堆肥或厭氧消化處理后作為肥料土地利用,污泥的土地利用存在抗性基因的污染隱患.
日趨加劇的水污染,已對人類的生存安全構成重大威脅,成為人類健康、經濟和社會可持續發展的重大障礙。
物理法:主要利用物理作用分離污水中的非溶解性物質,在處理過程中不改變化學性質。常用的有重力分離、離心分離、反滲透、氣浮等。物理法處理構筑物較簡單、經濟,用于村鎮水體容量大、自凈能力強、污水處理程度要求不高的情況。